China Professional 1400 Rpm Best Prices Cycloidal Drive Electric Gear Box Reduction Motor Speed Planetary Reducer Transmission Gearbox gearbox engine

Product Description

1400 rpm best prices cycloidal drive electric gear box reduction motor speed planetary reducer transmission gearbox

< ABOUT TILI

 

Technical data

 

Product Name 1400 rpm best prices cycloidal drive electric gear box reduction motor speed planetary reducer transmission gearbox
Power 0.18KW~90KW    
Torque 120Nm~30000Nm
Running direction Forward and reverse
Gear material Cast iron
Noise test Below 65dB
Brand of bearings C&U bearing, ZWZ, LYC, HRB, CHINAMFG , etc
Brand of oil seal NAK or other brand
Temp. rise (MAX) 40ºC  
Temp. rise (Oil)(MAX 50ºC  
Vibration ≤20µm
Housing hardness HBS190-240
Lubricating oil GB L-CKC220-460, Shell Omala220-460
Heat treatment Carburizing, Quenching etc
Efficiency 90% (depends on the transmission stage)
Installation type  Foot plate horizontal installation,  flange type vertical installation;
Input method Flange input(AM), shaft input(AD), inline AC motor input, or AQA servo motor

 

Installation Instructions

 

Company Profile

< WORKSHOP

< QUALITY CONTROL

 

Certifications

Packaging & Shipping

FAQ

 

Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing various series of reducer.

Q 2:Can you do OEM?
A:Yes, we can. We can do OEM for all the customers .if you want to order NON-STANDERD speed reducers,pls provide Drafts, Dimensions, Pictures and Samples if possible.

Q 3: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 4: Do you have inspection procedures for reducer?
A:100% self-inspection before packing.

Q 5: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 6:How to choose a gearbox? What if I don’t know which gear reducer I need?
A:You can refer to our catalogue to choose the gearbox or we can help to choose when you provide,the technical information of required output torque, output speed and motor parameter etc. Don’t worry, Send as much information as you can, our team will help you find the right 1 you are looking for.

Q 7: What information shall we give before placing a purchase order?
A:a) Type of the gearbox, Size , Transmission Ratio, input and output type, input flange, mounting position, motor information and shaft deflection etc. b)Housing color.c) Purchase quantity. d) Other special requirements

Q 8:What is the payment term?
A:You can pay via T/T(30% in advance as deposit before production +70% before delivery

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Speed Changing, Speed Reduction
Layout: Cycloidal
Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cycloidal gearbox

Calculation of Reduction Ratio in a Cycloidal Gearbox

The reduction ratio in a cycloidal gearbox can be calculated using the following formula:

Reduction Ratio = (Number of Input Pins + Number of Output Pins) / Number of Output Pins

In a cycloidal gearbox, the input pins engage with the lobes of the cam disc, while the output pins are engaged with the cycloidal pins of the output rotor. The reduction ratio determines the relationship between the number of input and output pins engaged at any given time.

For example, if a cycloidal gearbox has 7 input pins and 14 output pins engaged, the reduction ratio would be:

Reduction Ratio = (7 + 14) / 14 = 1.5

This means that for every 1 revolution of the input pins, the output rotor will complete 1.5 revolutions. The reduction ratio is a key parameter that influences the output speed and torque of the cycloidal gearbox.

cycloidal gearbox

History of Cycloidal Gear System Development

The history of cycloidal gear systems dates back to ancient times, with various forms of non-circular gears being used for specialized applications. The concept of the cycloidal gear system as we know it today, however, has evolved over centuries of engineering and innovation:

  • Ancient Roots: The concept of using non-circular gears can be traced back to ancient civilizations, where devices like the “Antikythera Mechanism” (c. 150-100 BC) employed non-circular gear arrangements.
  • Cam Mechanisms: During the Renaissance, engineers and inventors like Leonardo da Vinci explored mechanisms involving cams and followers, which are precursors to modern cycloidal gears.
  • Cycloidal Motion Studies: In the 19th century, engineers and mathematicians like Franz Reuleaux and Robert Willis studied and developed mechanisms based on the principles of cycloidal motion.
  • Early Cycloidal Gearboxes: The development of cycloidal gear systems gained momentum in the late 19th and early 20th centuries, with inventors like Emile Alluard and Louis André creating early forms of cycloidal gear mechanisms and gearboxes.
  • Cycloidal Drive: The term “cycloidal drive” was coined by James Watt in the 18th century, referring to mechanisms that produce a motion resembling a rolling circle.
  • Modern Cycloidal Gearboxes: The development of modern cycloidal gearboxes was further advanced by engineers like Ralph B. Heath, who patented the “Harmonic Drive” in the 1950s. This invention marked a significant step in the advancement and commercialization of precision cycloidal gear systems.
  • Advancements and Applications: Over the decades, cycloidal gear systems have found applications in robotics, aerospace, automation, and other fields that require compactness, precision, and high torque capabilities.

The history of cycloidal gear system development reflects the contributions of many engineers and inventors who have refined and advanced the technology over time. Today, cycloidal gearboxes continue to play a crucial role in various industries and applications.

cycloidal gearbox

Principle of Cycloidal Gearing

Cycloidal gearing is a mechanism that utilizes the unique shape of cycloidal discs to achieve motion transmission. The principle involves the interaction between two main components: the input disc and the output disc.

The input disc has lobes with pins, while the output disc has lobes with matching holes. The lobes on both discs are not perfectly circular but are shaped in a cycloidal profile. As the input disc rotates, the pins on its lobes engage with the holes in the output disc’s lobes.

As the input disc rotates, the pins move along the cycloidal paths, causing the output disc to rotate. The interaction between the pins and the holes results in smooth and continuous motion transfer. The unique shape of the cycloidal profile ensures that there is always at least one point of contact between the pins and the holes, allowing for efficient torque transmission and reduced wear.

Cycloidal gearing provides advantages such as high torque capacity, compact size, and precision motion. However, due to the complex shape of the components and the continuous engagement, manufacturing and assembly of cycloidal gearboxes can be intricate.

China Professional 1400 Rpm Best Prices Cycloidal Drive Electric Gear Box Reduction Motor Speed Planetary Reducer Transmission Gearbox   gearbox engineChina Professional 1400 Rpm Best Prices Cycloidal Drive Electric Gear Box Reduction Motor Speed Planetary Reducer Transmission Gearbox   gearbox engine
editor by CX 2024-04-16

Leave a Reply

Your email address will not be published. Required fields are marked *